If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+35x-564=0
a = 1; b = 35; c = -564;
Δ = b2-4ac
Δ = 352-4·1·(-564)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-59}{2*1}=\frac{-94}{2} =-47 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+59}{2*1}=\frac{24}{2} =12 $
| 1/4v=-7 | | 2/7d=3d-45/7 | | 16f-16=9f-7 | | 14v=-7 | | -2.66(8x-1.66)=86.22 | | -12=-2b-4b | | 1/6x+3/4x–3=4 | | 1/8t+3/t–3=4 | | -18=x+2x | | X+49x=12 | | -90=1+7(1+2v) | | 20x2=980 | | 11=-5n-6n | | (4x+19)1/2+4=x | | 4+5x-4x=4 | | 3(y-1)=9y+1-2(-5y-7) | | 246=-6(6b+7) | | n^2-n=1482 | | 1/x=1/1.5+1/2 | | 12+4n=4(n+30 | | x+(3x+10)=90 | | w^2+10w-336=0 | | x∘+(3x+10)∘=90∘ | | 6=1-4x+3x | | i/5=8/9 | | 138.20=4x+82.20 | | 9-(7-5y)=(5-3y*5)+77 | | 2/3x+27=31 | | |6x-3|=-15 | | 3x+14x=113 | | 12.5=4x+3.5 | | (30x+4)+86=180 |